Coding Theory via Groebner Bases

نویسنده

  • Mehwish Saleemi
چکیده

Coding theory plays an important role in efficient transmission of data over noisy communication channels. It consists of two steps; the first step is to encode the data to reduce its sensitivity to noise during transmission, and the second step is to decode the received data by detecting and correcting the noise induced errors. In this thesis an algebraic approach is used to develop efficient encoding and decoding algorithms for a very commonly used class of linear codes, the Reed-Muller codes and the Golay codes. To develop the approach first the algebraic structure of linear codes is explored. For this, the reduced Groebner basis for a class of ideals in commutative polynomial rings is constructed. The extension of these ideals to a residue class ring enabled us to find the parameters of the corresponding codes. It is found that the corresponding codes contains the primitive Reed-Muller codes. The added advantage of this approach is that, once these Groebner bases are constructed a standard procedure can be used to develop encoding and decoding processes. A binomial ideal, defined as a sum of toric ideal and a prime ideal over some arbitrary field, is explored. It is shown that this ideal is equal to a binomial ideal over a prime field. Purpose of proving this equivalence is to study binary codes associated to this ideal. Minimal generators and Groebner basis found for this ideal showed that the situation is quite closely related to the toric case. The investigation of universal Groebner basis, Graver basis and circuits for this ideal revealed that they have the same relationship among them which is true in general for toric ideals. Each linear code can be described as a binomial ideal defined above. Since the reduced Groebner basis for any ideal plays a vital role in describing encoding and decoding processes for the corresponding codes, a natural reduced Groebner basis for this ideal is proposed for any general term order. In fact, if a generator matrix is given for any code, by constructing the corresponding particular binomial ideal, one can immediately describe the reduced Groebner basis. Information positions and parity check positions are then given by standard and non-standard monomials for the ideal. A systematic encoding algorithm for such codes is explained in terms of remainders of the information word computed with respect to the reduced Groebner basis. Furthermore, the binary and ternary Golay codes are studied algebraically in terms of the binomial ideal. Finally, a presentation of the binomial ideal of a linear code in terms of its syzygy modules is provided and the corresponding finite free resolution has been described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groebner Bases Computation in Boolean Rings is P-SPACE

The theory of Groebner Bases, which has recently been honored with the ACM Paris Kanellakis Theory and Practice Award, has become a crucial building block to computer algebra, and is widely used in science, engineering, and computer science. It is wellknown that Groebner bases computation is EXP-SPACE in a general polynomial ring setting. However, for many important applications in computer sci...

متن کامل

A P-SPACE Algorithm for Groebner Bases Computation in Boolean Rings

The theory of Groebner Bases, which has recently been honored with the ACM Paris Kanellakis Theory and Practice Award, has become a crucial building block to computer algebra, and is widely used in science, engineering, and computer science. It is wellknown that Groebner bases computation is EXP-SPACE in a general setting. In this paper, we give an algorithm to show that Groebner bases computat...

متن کامل

Groebner basis techniques in multidimensional multirate systems

The Euclidean algorithm is a frequently used tool in the analysis of one-dimensional (1D) multirate systems. This tool is however not available for multidimensional (MD) multirate systems. In this paper we discus how Groebner basis techniques can ll this gap. After presenting the relevant facts about Groebner bases, we will show in a few examples how this technique can contribute to MD multirat...

متن کامل

Groebner Bases and the Cohomology of Grassmann Manifolds with Application to Immersion

LetGk,n be the Grassmannmanifold of k-planes inR . Borel showed that H∗ (Gk,n; Z2) = Z2 [w1, . . . , wk] /Ik,n where Ik,n is the ideal generated by the dual Stiefel-Whitney classes wn+1, . . . , wn+k. We compute Groebner bases for the ideals I2,2i−3 and I2,2i−4 and use these results along with the theory of modi ed Postnikov towers to prove new immersion results, namely that G2,2i−3 immerses in...

متن کامل

Groebner Bases in Theorema

In this talk we show how the theory of Groebner bases can be represented in the computer system Theorema, a system initiated by Bruno Buchberger in the mid-nineties. The main purpose of Theorema is to serve mathematical theory exploration and, in particular, automated reasoning. However, it is also an essential aspect of the Theorema philosophy that the system also provides good facilities for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012